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E-08193 Bellaterra, Spain
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Abstract
We study entanglement generation via particle transport across a one-
dimensional system described by the Bose–Hubbard Hamiltonian. We analyse
how the competition between interactions and tunnelling affects transport
properties and the creation of entanglement in the occupation number basis.
Alternatively, we propose to use spatially delocalized quantum bits, where
a quantum bit is defined by the presence of a particle either in a site or in
the adjacent one. Our results can serve as guidance for future experiments
to characterize entanglement of ultracold gases in one-dimensional optical
lattices.

PACS numbers: 03.65.Ud, 03.67.Mn, 03.67.Lx

1. Introduction

The generation of entanglement between distant nodes of a quantum network has profound
implications for quantum computation and information [1], and has triggered a remarkable
effort in the study of entanglement generation and quantum state transport between distant
lattice sites (see, e.g., [2–5] for discussions of transport in spin chains; entanglement dynamics
in such systems is, e.g., studied in [6–8]). Furthermore, the recent experimental achievements
in loading either bosonic and/or fermionic ultracold atomic gases into optical lattices, which
permit us to reproduce very accurately several spin-Hamiltonians, have spurred an enormous
interest in lattice systems (see [9] and references therein).

Here we focus on one of the simplest but yet non-trivial lattice models, the so-called one-
dimensional (1D) Bose–Hubbard model (BHM) [10, 11]. It describes a system of spinless
bosons with (repulsive) on-site interaction, which can hop (tunnel) between adjacent sites of
a 1D lattice. In general, this genuinely many-body model cannot be reduced to an effective
non-interacting one. As proposed in [12] and later experimentally demonstrated [13], it can
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be realized by confining ultracold atoms in an optical lattice. In this paper, we study transport
properties in this system. Here, by transport we refer to the dynamics obtained when an
extra particle is loaded onto a system that previously was cooled to its ground state. In some
limiting cases, transport can be described in the language of continuous time quantum walks
(a quantum analogue of classical random walks), and closed analytical expressions can be
found [14]. When competition between hoping and on-site interactions arises, the transport
properties as well as the generation of entanglement between distant locations of the lattice
are substantially modified.

The paper is structured as follows: in the present section we review the essential properties
of the Bose–Hubbard model. As one limiting case, we identify transport across the lattice
with continuous time quantum walks. We discuss quantification and characterization of
entanglement for a single particle propagating in a 1D lattice. In section 2, we analyse the
generation of entanglement between distant lattice sites when an extra particle is loaded on
top of the ground state. In section 3, we discuss entanglement in the so-called spatially
delocalized qubit (SDQ) basis and investigate the role of interactions within this scheme.
Finally, we summarize briefly in section 4.

1.1. The Bose–Hubbard Hamiltonian

The Bose–Hubbard Hamiltonian for a 1D lattice of M sites (with open-boundary conditions)
has the form

ĤBH = −J

M−1∑
i=1

(
â
†
i âi+1 + â

†
i+1âi

)
+

M∑
i=1

εi n̂i +
U

2

M∑
i=1

n̂i(n̂i − 1), (1)

where âi and â
†
i are the bosonic annihilation and creation operators for a particle on the ith

lattice site, n̂i = â
†
i âi is the corresponding bosonic number operator and εi accounts for the

single-particle on-site energy. The Bose–Hubbard model assumes only nearest neighbour
tunnelling with a constant amplitude J and pairwise interaction between bosons on the same
site leading to an energy shift U.

A particularly clean realization of such a Hamiltonian is obtained by trapping neutral
bosons via the dipole force in an optical lattice [12]. By taking the trapping sufficiently tight
in two directions (say y and z), an effective one-dimensional system can be realized. The
corresponding Hamiltonian in second quantization notation reads

ĤOL =
∫

dx ψ̂
†
(x)

(
p2

x

2m
+ V0 sin2(πx/d)

)
ψ̂(x) + g

∫
dx ψ̂

†
(x)ψ̂

†
(x)ψ̂(x)ψ̂(x)

≡
∫

dx ψ̂
†
(x)Hfreeψ̂(x) + Ĥint. (2)

The optical lattice is completely characterized by its depth V0, that can be controlled through
the laser intensity, and by the wave number k = 2π/λ, where d = λ/2 is the lattice periodicity.
The effective 1D interaction strength g = 2πh̄asωt (where ωt is the transversal frequency of
the trap assumed equal in the y, z directions and as is the atomic scattering length) can be
changed either by modifying the confinement of the atoms in the two orthogonal directions
or, alternatively, via a Feshbach resonance, which even allows us to change the sign of as

[15]. For periodic boundary conditions (or large enough lattices) the bosonic operators can
be expanded in terms of Bloch functions. In the low temperature regime and with typical
bosonic interaction strengths, excitations to higher bands can be neglected for sufficiently
deep lattices. The dynamics is then restricted to the lowest Bloch band and the field operators
can be expanded in terms of single-particle Wannier functions localized at each lattice site
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xi = di as w(x − xi) ≡ 〈x|wi〉. The bosonic creation operators â
†
i are now defined

via |wi〉 = â
†
i |�〉, |�〉 being the vacuum. Equation (1) is derived from equation (2) by

keeping only nearest neighbour hopping and restricting the interactions between bosons to a
contact (zero-range) potential. Under these approximations, the tunnelling amplitude between
adjacent sites reads J = 〈wi |Hfree|wi+1〉, and the on-site boson–boson interaction is given by
U = g

∫
dx|w(x)|4.

The Bose–Hubbard ground state with a filling factor n̄ is obtained by minimizing
〈ĤBH − µ

∑
i n̂i〉, where the chemical potential µ fixes the total number of particles. In

the limit U/J → 0 (strictly speaking, in the thermodynamic limit for U/J < (U/J )c ≈ 3.44
for n̄ = 1 [16]), it is energetically favourable to spread each particle over the whole lattice.
For periodic boundary conditions, a ground state with a filling factor n̄ can be explicitly
written as

∣∣ψn̄
GS,SF

〉 = 1√
(Mn̄)!

(
1√
M

M∑
i

â
†
i

)Mn̄

|�〉, (3)

where Mn̄ is the total number of particles. This superfluid (SF) state is characterized by large
fluctuations of the on-site number of particles, divergent correlation length, and a vanishing
gap. In the opposite limit, for U/J → ∞, the ground state is a Mott insulator (MI) state, i.e.,
a product state with a well-defined number n̄ of atoms per site

∣∣ψn̄
GS,MI

〉 = 1√
n̄!

M∏
i

(
â
†
i

)n̄|�〉, (4)

where n̄ − 1 < µ/U < n̄. The MI state has a finite correlation length and a gapped spectrum.
Increasing U/J from 0 to ∞ for an integer-filling factor (at T = 0 and in the infinite system),
the 1D Bose–Hubbard model undergoes a quantum phase transition (which corresponds to a
Kosterliz–Thouless phase transition). There is also a generic phase transition which is crossed
when the value of U/J is fixed and the chemical potential µ changes. In this case, the number
of particles is not conserved and the behaviour of the ground state near the phase transition
simply corresponds to a weakly interacting condensate with a non-integer-filling factor. See
[9] and references therein for a detailed review of the properties of the Bose–Hubbard model.

1.2. Continuous time quantum walks

For the simplest transport case in the Bose–Hubbard model, namely, for a single boson placed
in an otherwise empty lattice, the dynamics is equivalent to the one of a free particle moving
in (finite) discretized one-dimensional space. Recently, such a model and its generalizations
to more complex underlying graphs have been studied intensively in the context of continuous
time quantum walks (CTQWs). Quantum walks, either continuous or discrete, have been
proposed as quantum versions of classical random walks and analysed with the aim of
constructing new types of algorithms. They have also been studied, e.g., in relation to
decoherence properties of lattice systems. See [17] (and references therein) for an excellent
review of the topic.

The definition of a CTQW is closely related to classical continuous time random walks
[18, 17]. Let us consider the classical situation of a ‘particle’ which can move on a set of
vertices. The probability of jumping from a vertex i to another vertex j per unit time is denoted
as Jij , with Jij > 0 if both vertices are connected and Jij = 0 otherwise. To conserve the
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Figure 1. (a) Probability distribution |ci (t)|2 versus time for a CTQW starting at site (M + 1)/2
in a chain of M = 41 sites; (b) probability distribution at time t = 5J .

total probability, we demand Jii = −∑
j �=i Jij . If pi(t) is the probability of being at time t at

vertex i, then

dpi(t)

dt
=

∑
j

Jijpj (t). (5)

Given a quantum state |ψ〉 in the Hilbert space H = {|i〉, i = 1 . . . M} spanned by the vertices,
the similarity between equation (5) and the Schrödinger equation for the amplitudes 〈i|ψ(t)〉,

i
d 〈i|ψ(t)〉

dt
=

∑
j

〈i|Ĥ |j 〉〈j |ψ(t)〉, (6)

suggests to define a quantum analogue of the classical random walk by identifying Jij with
the Hamiltonian matrix elements: Hij = 〈i|Ĥ |j 〉 = Jij . For vertices arranged on a finite
line with M sites and constant nearest neighbour transition probabilities Jij ≡ J in the graph,
equation (6) is equivalent to the Schrödinger equation of a single particle evolving under
the Bose–Hubbard Hamiltonian (1). To generate entanglement in an effective way, transport
should be symmetric, thus we impose an odd number M of sites. Placing the particle in the
middle of the chain, i.e., preparing |ψ(t = 0)〉 = â

†
(M+1)/2|�〉, dynamics after a time t leads to

the state

|ψ(t)〉 =
M∑
i=1

ci(t)â
†
i |�〉, (7)

where the coefficients ci(t) are given by [2, 3]

ci(t) = 2

M + 1

M∑
k=1

[
sin

(
πk

2

)
sin

(
πki

M + 1

)]
exp

[
2iJ t cos

(
kπ

M + 1

)]
. (8)

The probability distribution pi(t) = |ci(t)|2, see figure 1, is symmetric with respect to
the point (M + 1)/2. For times t such that p1(t) = pM(t) 	 1, its standard deviation
� = √∑

i pii2 − (
∑

i pii)2 grows linearly in time: � ∝ t [17]. This is in strong contrast to
a classical 1D random walk, where � ∝ √

t .

1.3. Characterizing entanglement

Here we first discuss shortly how to characterize entanglement distributed in a CTQW. We will
later generalize this discussion to the transport of a defect, namely an extra particle, loaded on
the top of the ground state of the Bose–Hubbard Hamiltonian. Since particles in the CTQW as
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well as in the spinless Bose–Hubbard model have no internal degrees of freedom, the notion of
quantum bit (or quantum dit) and its extensions to entangled states and entanglement measures
have to be redefined. Bose has discussed the distribution of entanglement in the CTQW for a
single particle as well as for N non-interacting indistinguishable bosons [14] (corresponding
to N (symmetrized) versions of the quantum walk), quantifying entanglement between the
two outer lattice sites (say 1,M) in the occupation number basis. To this aim, the reduced
density matrix of sites 1 and M is expanded in the basis {|n1, nM〉}, where ni corresponds to the
number of particles at site i. Within this basis, usual entanglement measures can be applied.
Quantifying entanglement in this ‘second quantized’ formalism was introduced by Zanardi
[19] and subsequently intensively discussed in the literature [20–23]. For just a single particle,
mapping its presence (absence) on site i to spin-up (spin-down) reduces the propagation of
a single boson in the lattice to the dynamics of a single, initially localized, excitation in the
XY spin chain [2, 3]. This analogy between ‘space’ and ‘spin-1/2’ entanglement is, however,
limited: a spin at site i can be in any superposition of ‘up’ and ‘down’, |up〉i + |down〉i, while
|ni = 0〉 + |ni = 1〉 has no physical meaning for massive particles. Also, in the occupation
number basis, operators must correspond to a direct sum of operators acting in sectors with
a fixed number of particles. For these reasons, it is not clear whether entanglement in the
occupation number basis can be identified at all with usual ‘spin’ entanglement. In particular,
there are no protocols that convert a (highly) entangled state in the occupation number basis
to a ‘spin’-entangled state containing the same amount of entanglement3.

Despite its practical drawbacks, we investigate first the generation of entanglement in the
occupation number basis, thereby merely using it as a tool to characterize transport in the
system. For a single particle (i.e., the CTQW), the reduced density matrix of sites 1 and M is
always of the form

ρ̂1M(t) = ρ̂(0) ⊕ ρ̂(1), ρ̂(0) = 1 − 2p1(t), ρ̂(1) = 2p1(t)|	+〉〈	+|, (9)

where the upper indices correspond to the total particle number, and |	+〉 = (|1, 0〉 +
|0, 1〉)/√2. Later to become able to generalize to states with more than one particle, we
measure the entanglement through the logarithmic negativity LN [24]. From equation (9),

LN(ρ̂1M(t)) = log2

∥∥ρ̂

1M(t)

∥∥
1

= log2


2p1(t) +

√
α + (1 − 2p1(t))

√
β

2
+

√
α − (1 − 2p1(t))

√
β

2


 , (10)

where α = 1 − 4p1(t) + 6p1(t)
2, β = 1 − 4p1(t) + 8p1(t)

2. Since we are considering open
boundary conditions, the logarithmic negativity presents several local maxima in time (as
well as periodic revivals) due to multiple reflections. In order to characterize the CTQW and
subsequently the Bose–Hubbard model through the generated entanglement, we consider only
its first maximum.

3 In [14], a method to convert ‘space’ to ‘spin’ entanglement is given for the coupled chain. It requires interaction
between spins and final measurements over intermediate sites. Thus it is not a local conversion scheme. Furthermore, it
allows us to extract only up to one ebit. In [20], a local protocol is presented to extract an ebit from (|1, 0〉+|0, 1〉)/√2,
which however needs a sink/source for particles.
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2. Transport properties of the Bose–Hubbard model: from the Mott insulator to the
superfluid phase

2.1. Transport of an additional particle on a Bose–Hubbard ground state background

We now generalize the previous discussion transport of a single particle in an empty lattice
system to an extra particle propagating on a background given by a Bose–Hubbard ground
state. Let us start by discussing the two extreme cases (i) U/J → ∞ (Mott insulator phase)
and (ii) U/J → 0 (superfluid phase).

(i) Mott insulator phase. Adding an extra-particle at site (M + 1)/2 to the MI ground state
with an integer-filling factor n̄ leads to the initial state

|ψ(t = 0)〉 = â
†
(M+1)/2√
n̄ + 1

∣∣ψn̄
GS,MI

〉 = â
†
(M+1)/2√
n̄ + 1

(
1√
n̄!

)M M∏
i=1

(
â
†
i

)n̄|�〉. (11)

For U/J large, during time evolution the system will remain in the subspace spanned by
states {|in̄〉 = â

†
i |ψn̄

GS,MI〉/
√

n̄ + 1, i = 1 . . . M}. Noticing that
(−J â

†
i+1âi

)
â
†
i

∣∣ψn̄
GS,MI

〉 =
−J (n̄ + 1)â

†
i+1

∣∣ψn̄
GS,MI

〉
, we find that the effective Hamiltonian, up to corrections of order

(U/J )−1, reads

Heff = −J (n̄ + 1)
∑

i

[|in̄〉〈(i + 1)n̄| + |(i + 1)n̄〉〈in̄|] . (12)

Thus, |ψ(t)〉 = ∑
i c

n̄
i (t)|in̄〉, with cn̄

i = ci((n̄ + 1)t), i.e., from bosonic enhancement
the propagation is n̄ + 1 times faster than in the pure CTQW, while the magnitude of the
distributed entanglement is as before.

(ii) Superfluid phase. In the opposite limiting case, for U/J = 0, approximating the ground
state of the system with open boundaries by the one for periodic boundary conditions, the
initial state reads

|ψ(0)〉 = αâ
†
(M+1)/2

∣∣ψn̄
GS,SF

〉 = α
â
†
(M+1)/2√
(Mn̄)!

[
1√
M

M∑
i=1

â
†
i

]Mn̄

|�〉, (13)

where α is a normalization constant. Evolution of this state leads to

|ψ(t)〉 = α√
(Mn̄)!

M∑
i=1

ci(t)â
†
i

∣∣ψn̄
GS,SF

〉
, (14)

since −J
[ ∑

i

(
â
†
i+1âi + â

†
i−1âi

)
, â

†
j

] = −J
(
â
†
j+1 + â

†
j−1

)
. Thus, the extra particle added

on top of the superfluid ground state propagates as a single particle in an otherwise empty
lattice.

The entanglement between the two outer sites however is strikingly different for the Mott
insulator and the superfluid state, as we will discuss now. Let us first consider entanglement
between the outer sites just for the ground state, without any additional particle. In the insulator
case, we have

∣∣ψn̄
GS,MI

〉 = 1

(
√

n̄!)M

M∏
i=1

(
â
†
i

)n̄|�〉 = 1

n̄!

(
â
†
1â

†
M

)n̄ 1

(
√

n̄!)M−2

M−1∏
i=2

(
â
†
i

)n̄|�〉 (15)

≡ |φMI〉1M ⊗ |ψMI〉2...M−1. (16)

The reduced density matrix of sites 1,M then reads

ρ̂MI,n̄ = tr2...M−1
(∣∣ψn̄

GS,MI

〉〈
ψn̄

GS,MI

∣∣) = |φMI〉〈φMI| = |n̄, n̄〉〈n̄, n̄|, (17)
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Figure 2. Entanglement (as measured by the logarithmic negativity LN) between the outer sites
for the superfluid ground state (squares) and the superfluid ground state with an extra particle using
ci = (δi1 + δiM)/

√
2 (filled circles) as discussed in the text. The number of sites is M = 20. The

purity tr[(ρ̂SF)2] of the reduced density matrix is plotted as a dashed line. For the insulator case
(with integer n̄), always LN(ρ̂′

MI,n̄) = 0 for the ground state and LN(ρ̂′
MI,n̄) = 1 for the ground

state with an additional particle and ci as above.

where the latter expression is in the occupation number basis. ρ̂MI,n̄ is a non-entangled pure
state. On the other hand, for the superfluid ground state and M > 2,

∣∣ψn̄
GS,SF

〉 = 1√
(Mn̄)!

[
1√
M

M∑
i=1

â
†
i

]Mn̄

|�〉

=
Mn̄∑
k=0

γk

1√
k!

(
â
†
1 + â

†
M√

2

)k
1√

(Mn̄ − k)!


 1√

M − 2

M−1∑
j=2

â
†
j




Mn̄−k

|�〉 (18)

≡
Mn̄∑
k=0

γk

∣∣φk
SF

〉
1M

⊗ ∣∣ψk
SF

〉
2...M−1, (19)

with

γk =
√(

Mn̄

k

)
2k(M − 2)Mn̄−k

MMn̄
. (20)

The reduced density matrix reads

ρ̂SF,n̄ =
Mn̄∑
k=0

γ 2
k

∣∣φk
SF

〉〈
φk

SF

∣∣. (21)

Except for the trivial cases Mn̄ = 0 or M = 2, the state ρ̂SF,n̄ is mixed, has a direct sum
structure in the occupation number basis and is entangled. As figure 2 shows, entanglement in
the ground state grows (weakly) with the total number of particles Mn̄ in the system (keeping
the number of sites M fixed). This happens despite the fact that the purity of the reduced state
decreases at the same time, meaning that the outer sites also become entangled to the inner
part of the chain. The reason is that adding more particles corresponds to adding more degrees
of freedom which can be entangled in the occupation number basis. For this particular case,
this leads to an increase in entanglement.
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In order to discuss the entanglement generated from an extra particle on the top of the
ground state, let us consider the simplified situation ci = (δi1 + δiM)/

√
2. For the Mott case,

ρ̂ ′
MI,n̄ = 1

2 (|n̄ + 1, n̄〉 + |n̄, n̄ + 1〉) (〈n̄ + 1, n̄| + 〈n̄, n̄ + 1|) , (22)

which is a pure state with logarithmic negativity LN(ρ̂ ′
MI,n̄) = 1, independently of n̄. Note

that the entanglement is completely contained in the sector of 2n̄ + 1 particles shared between
the outer sites. This is different for the superfluid phase. Here the extra particle on the top of
the ground state with a filling factor n̄ leads to

ρ̂ ′
SF,n̄ =

Mn̄+1∑
k=0

(γ ′
k)

2
∣∣φk

SF

〉〈
φk

SF

∣∣, (23)

with γ ′
0 = 0, and

(γ ′
k)

2 = k(γk−1)
2

1 + 2n̄
for k > 0. (24)

Clearly, for an empty lattice, n̄ = 0, the choice of ci leads to LN(ρ̂ ′
SF,n̄=0) = 1. For n̄ > 0,

the logarithmic negativity ρ̂ ′
SF decreases (figure 2). Again, as n̄ grows, the number of degrees

of freedom which potentially can be entangled also increases. Still, in this case the two outer
sites are less entangled due to the smaller purity of the reduced density matrix (the outer sites
are more entangled to the inner part of the chain). It might seem counter-intuitive that

LN(ρ̂ ′
SF,n̄) < LN(ρ̂ ′

SF,n̄=0), (25)

despite the additivity property of the logarithmic negativity [24]. Here we should again remark
that the occupation number basis which is used to quantify entanglement does not reflect the
tensor product structure of individual particles. In fact, the bosonic particles themselves live in
a symmetrized subspace which does not have the structure of a full tensor product (this indeed
is the reason why for bosonic particles new measures of entanglement have to be introduced).

Let us finally note that if the system’s dynamics is governed by the Bose–Hubbard
Hamiltonian, then the logarithmic negativity will always be below the values of figure 2, as in
this case the ci(t)’s are given by equation (8).

To study how the competition between interactions and tunnelling affects the generation
of entanglement when adding an extra particle, we numerically calculate the time evolution
of the initial state for a wide range of parameters, 6 < U/J < 40. We use standard numerical
MPS algorithms [25]. As we limit the number of particles per site to 5 in our simulations,
we cannot study states well inside the superfluid regime, where for n̄ = 1 up to M particles
per site have to be taken into account. Still, already for values of U/J < 15 drastic changes
due to the possibility of tunnelling are manifested in the entanglement between the outer
lattice sites. To calculate |ψ(t)〉 = exp(−iĤBHt)

∣∣ψn̄=1
GS

〉
, we first obtain the ground state of

the Bose–Hubbard Hamiltonian for different values of the parameter U/J . We choose the
chemical potential as µ/J = U/(2J ) in the case of large U/J . For small values of the ratio
U/J , we adjust µ appropriately, in order to obtain the ground state

∣∣	n̄=1
GS

〉
with a filling factor

n̄ = 1.4 Having the ground state, we add a particle to the system and obtain the dynamics
through a time-dependent MPS simulations. From the MPS state, the reduced density matrix
ρ̂1M of the outer sites can be extracted efficiently, such that we can compute the logarithmic
negativity as a function of time. In figure 3, we display the value of LN(ρ̂1M) at its first
maximum as a function of U/J . In figure 4, we analyse time evolution in detail for two
cases: well in the MI phase (U/J = 40) and close to the SF phase (U/J = 6). Figures 4(a)

4 In a one-dimensional system the lobes of the Mott insulating phase are much stronger deformed than in two or
three dimensions [26].
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Figure 3. Entanglement between the two outer sites of the lattice, measured by the logarithmic
negativity LN(ρ̂1M), versus U/J for a chain of M = 41 sites (after inserting an extra particle
at site at (M + 1)/2). The chemical potential µ is adapted to have a ground state with a mean
number of particles per site n̄ = 1 (µ = U/(2J ) for U � J ). The data are obtained through MPS
simulations truncating the basis to states of up to five particles per site and using D � 20.
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Figure 4. Left column: mean occupation number ni = 〈n̂i〉 of site i as a function of time for a
chain of M = 41 lattice sites ((a) U/J = 40; (c) U/J = 6). The system is initially cooled to its
ground state with a filling factor n̄ = 1. At t = 0, a further particle is loaded at site i = 20. Right
column: logarithmic negativity LN(ρ̂21−k,21+k) of the reduced density matrix of sites 21 − k and
21 + k, k = 1, . . . , 20 versus time for (b) U/J = 40, (d) U/J = 6.

and (c) show the propagation of the excitation, i.e., the mean occupation number 〈ni〉 versus
time. The propagation in the two cases is very similar (as it is visible from the figures, the
evolution is slower for U/J = 6, though not by a factor of 2 as it would be the case for
U/J = 0). The propagation of entanglement, visualized in figures 4(b) and (d) through the
logarithmic negativities of the reduced density matrices of sites (M − 1)/2 ± k, is different
in the two cases. Clearly, the efficient generation of entanglement in the occupation number
basis requires a Mott insulator background. As we demonstrated, entanglement generation is
much less efficient if tunnelling becomes comparable to or larger than interactions.

A strategy to increase entanglement in a system of ideal (interactionless) bosons in the
occupation number basis consists in loading several bosons in a given site of an otherwise
empty lattice [14]. For interacting particles, however, in the limit U � J , entanglement does
not increase if all N particles are initially located at the same site. In this case, tunnelling of a
single particle alone is strongly suppressed and atoms tunnel together. Treating the tunnelling
term perturbatively, it can be seen that the evolution is slower by a factor J/(UN).
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3. Creating entangled ‘spatially delocalized quantum bits’

In this section, we discuss an alternative way of defining a quantum bit in a lattice filled with
spinless bosons. This definition does not rely on the occupation number basis, leading to a
notion of entanglement which is physically more sound. We use the concept of ‘spatially
delocalized quantum bits’ (SDQs), in which the binary alternative consists in having an atom
either in one side or in the adjacent one.

To be specific, we use a single particle shared between two (adjacent) sites i, i + 1
of the chain to define a quantum bit by identifying |0〉SDQ ≡ |ni = 1, ni+1 = 0〉 and
|1〉SDQ ≡ |ni = 0, ni+1 = 1〉. Though in this definition again a qubit is defined via the
absence or presence of a particle on a lattice site, now one particle is necessary per qubit.
In this way, for any unitary transformation the number of particles is conserved locally. For
such ‘charge’ or ‘spatially delocalized’ qubits, implementations of quantum gates have been
proposed for bosonic atoms in optical lattices [27], as well as for electrons in quantum dots
[28] or photons in photonic crystals [29].

To entangle two such qubits at the ends of a 1D chain of even length M, we place two
particles at sites M/2 and M/2 − 1 (in the middle of the chain) and let the system evolve.
As before, we start by considering an otherwise empty chain, i.e., the quantum walk with two
particles: |ψ(t = 0)〉 = â

†
M/2â

†
M/2+1|�〉. For a spatially delocalized qubit defined through

a particle shared between sites i, j , we introduce the corresponding projection operators
P̂

(i,j)
α = |α〉SDQ〈α|. For instance,

P̂
(i,j)

0 = |0〉sdq〈0| = |ni = 1, nj = 0〉〈ni = 1, nj = 0|. (26)

P̂
(i,j)

0 + P̂
(i,j)

1 thus projects onto the subspace having a single particle shared between sites i
and j . If two qubits are defined on sites (1, 2) and (M − 1,M) respectively, we obtain the
density matrix for the two spatially delocalized qubits as

ρ̂
sdq
αβ,α′,β ′(t) = P̂ (1,2)

α ⊗ P̂
(M−1,M)
β |ψ(t)〉〈ψ(t)|P̂ (1,2)

α′ ⊗ P̂
(M−1,M)
β ′ . (27)

The probability p of a successful projection onto the subspace of one particle per SDQ is
given by p = tr ρ̂sdq � 1, and the entanglement between the two spatially delocalized
qubits in case of a successful projection is measured by the logarithmic negativity of the
correctly normalized state LN(ρ̂sdq/p). The probability p, the logarithmic negativity LN and
the probabilistic entanglement pLN are plotted in figure 5(a) for the case of no interaction
between the two bosons (U/J = 0) and for strong interaction between them (U/J � 1) in
figure 5(b).

The time dependence of the logarithmic negativity, as well as of the probability p, is
clearly different in the two cases. It is illustrative to consider the case of only four sites, (with
the two particles initially located at sites 2 and 3). Then the initial state is |10〉SDQ, which
is a separable state of the two spatially delocalized qubits. If interactions are absent, then
already at early times populations of states lying in the delocalized qubit space can originate
from two possible paths (starting at sites 2 or 3, respectively). It is this interference which
leads to a fast generation of entanglement. If interactions are strong, then one of these paths
is effectively suppressed at early times as each particle is confined to ‘its’ qubit (this leads to
the larger probability p for a successful projection). Entanglement in this case is (initially)
only generated through the collisional phase shift (this effect can be used to implement a
phase gate for spatially delocalized qubits [27]), which however is small. As a consequence,
entanglement is smaller if interactions are large.

In the presence of a ground state background with an average number n̄ of particles per
site, generating (entangled) spatially delocalized quantum bits from the evolution of two extra
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Figure 6. Generation of entanglement between two spatially delocalized qubits formed from
sites 1, 2 and 3, 4, respectively. Left column: U/J = 0, right column: U/J = 20. ((a), (d))

show the mean site occupation 〈ni〉, ((b), (e)) the populations SDQ〈αβ|ρ̂SDQ(t)/p|αβ〉SDQ, and
((c), (f )) give the probability p of successful projection into the subspace of one particle per
spatially delocalized qubit and the entanglement measured via the logarithmic negativity LN.

particles only can be done effectively in the Mott case. Here the definition of the basis can
be modified as |0〉SDQ ≡ |ni = n̄ + 1, ni+1 = n̄〉, |1〉SDQ ≡ |ni = n̄, ni+1 = n̄ + 1〉. In the
superfluid case, the on-site particle number fluctuations in the ground state require a projection
onto the subspace of a fixed number of particles per spatially delocalized qubit, which strongly
reduces the efficiency of the scheme.
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4. Conclusions

Summarizing, we have analysed the generation of entanglement between the outer extrema of
a 1D Bose–Hubbard chain by loading an extra particle on the top of the ground state. We have
investigated effects arising from direct competition between tunnelling and interactions in the
entanglement behaviour. In some limiting cases, the bosonic propagation can be adequately
described as continuous time quantum walks. As part of our analysis, we have discussed
two conceptually different ‘computational bases’ to quantify entanglement between particles
which have no internal degrees of freedom, namely the occupation number basis and a spatially
delocalized qubit basis.
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